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This paper extends traditional two-player prisoners’ dilemma �PD� to three-player PD. We have studied
spatial patterns of cooperation behaviors, growth patterns of cooperator clusters and defector clusters, and
cooperation frequency of the players. It is found while three-player PD exhibits many properties similar to
two-player PD, some new features arise. Specifically, �i� a new region appears, in which neither a 3�3
cooperator cluster nor a 3�3 defector cluster could grow; �ii� more growth patterns of cooperator clusters and
defector clusters are identified; �iii� multiple cooperation frequencies exist in the region that exhibits dynamic
chaos. Some theoretical analysis of these features is presented.
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I. INTRODUCTION

Game theory is a unifying paradigm behind many scien-
tific disciplines, from biology to behavioral sciences to eco-
nomics. The widely studied games include the Hawk-Dove
game �1–3�, prisoners’ dilemma �4–8�, public good game
�9,10�, Snowdrift game �11–13�, rock-scissors-paper game
�14�, and so on �see, e.g., a recent review �15�, and refer-
ences therein�.

The prisoners’ dilemma �PD� has been studied as a meta-
phor for problems surrounding the evolution of cooperative
behavior. In the standard form, it is played by two players,
each of whom could choose either to cooperate C or to defect
D in any one encounter. If both players choose C, both get a
payoff of magnitude R; if one defects while the other coop-

erates, D gets the game’s biggest payoff T, while C gets S; if
both defect, both get P. The payoff matrix is therefore as
follows:

C D

C R S

D T P

�1�

With T�R� P�S, the paradox is evident �We would like to
mention that usually P and S are set to zero, R and T are set
to R=1, 1�T=b�2�. In single encounter D is more advan-
tageous but for the whole unity, C is more beneficial. When
it is played in a single round, defectors have more fitness
over cooperators. But when the game is repeated and coop-

FIG. 1. �Color online� Four re-
gions in the space �A ,B�. The gray
region corresponds to B�A and
is not studied as explained in
main text. �a� p=0; �b� p=1 /2,
the red dashed line represents
B=2A; �c� p=0.8, note that region
III disappears.
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erators meet often, there is possibility that cooperators might
have better fitness than defectors.

The two-player PD has been widely studied. In their semi-
nal work, Nowak and May introduced a spatial evolutionary
game to demonstrate that local interactions within a spatial
structure can maintain cooperative behavior indefinitely and
lead to spatial dynamic fractals �6,7�. Szabó et al. have in-
vestigated evolutionary PD with voluntary participation �16�.
Recently, PD on social networks and evolving networks has
also been discussed �17�.

There are many socially and economically important ex-
amples where the number of decision makers involved is
greater than 2, see, e.g., Refs. �18,19�. In terms of PD, the
situation usually is modeled as repeated play of simple pair
interactions, in which payoffs are calculated as the average
of the payoffs against the two opponents in the two-player
PD. For example, the two-player PD has been generalized to
three-player PD in Refs. �20,21�. Specifically, the payoff ma-
trix is

CC CD DD

C 1 1/2 0

D b b/2 0

�2�

In this three-player PD, there is also only one parameter b.
As shown in Sec. IV B, the three-player PD is qualitatively
similar to classical two-player PD.

In this paper, we study a different three-player PD on
spatial 2D lattice, in which we consider the effect of three
parameters. It is found qualitatively different results arise.
Some theoretical analysis of these results is presented.

The paper is organized as follows. In the next section,
three-player PD model is presented. We study the replicator
dynamic of three-player PD in well-mixed population in Sec.
III. The simulation and analytical investigations are reported
in Sec. IV. The conclusion is given in Sec. V.

II. MODEL

In our three-player PD model, the payoff matrix of three
player PD is

CC CD DD

C R p S

D T r P

�3�

It is clear that T is the largest among the six parameters while
S is the smallest �22�. In a three-player PD game, it is rea-
sonable to assume R� p, r� P �the payoffs increase with an
increasing number of cooperators�, and r� p �defectors al-
ways receive higher payoffs than cooperators�. Another rea-
sonable assumption is R� P �23�.

In our model, we set P=S=0, R=1, r=A, T=B. Here B
�1, B�A� p�0, p�1. As a result, we have three param-
eters A ,B , p. In next section, we study the effect of B and A

(a)

0 50 100 150 200

0

50

100

150

200

(b)

0 50 100 150 200

0

50

100

150

200

(c)

0 50 100 150 200

0

50

100

150

200

(d)

0 50 100 150 200

0

50

100

150

200

FIG. 2. �Color online� Typical spatial patterns in region �a� I; �b� II; �c�,�d� IV. p=0, �a� B=2.0, A=0.1; �b� B=3.0, A=0.02;
�c� B=3.0, A=0.16; �d� B=5.0,A=0.16. Initially 10% defectors are randomly distributed.
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on the cooperation behavior under different values of p. Note
that in the special case p=1 /2, B=2A, the three-player PD
reduces to those corresponding to Eq. �2�.

III. REPLICATOR DYNAMIC

We first investigate the replicator dynamic of three-player
PD in well-mixed population. Note that this analysis is valid
only in the limit of an infinite population. Denote the fre-
quency of cooperator as x, then the fitness of C is

fC = x2 + p � 2x�1 − x� .

The fitness of D is

fD = Bx2 + A � 2x�1 − x� .

The average fitness is
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FIG. 3. �Color online� Typical spatial patterns in region III. p=0, �a� B=1.37, A=0.4; �b� B=2.0, A=0.4. Initially 10% defectors are
randomly distributed.

FIG. 4. �Color online� �a�,�c� Regions R1-R4 correspond to different growth pattern of a 3�3 C cluster. �b�,�d� Regions r1-r8 correspond
to different growth pattern of a 3�3 D cluster. The inset in �b� shows details of region r1. �a�,�b� p=0; �c�,�d� p=1 /2. The red dashed line
represents B=2A. The blue numbers on boundaries denote the number of boundaries �see Table I�.

SPATIAL THREE-PLAYER PRISONERS’ DILEMMA PHYSICAL REVIEW E 78, 041101 �2008�

041101-3



� = xfC + �1 − x�fD

= x3 + 2px2�1 − x� + �1 − x��Bx2 + 2Ax�1 − x�� .

The replicator equation is given by

ẋ = x�fC − ��

= x�x2 + p � 2x�1 − x� − 2px2�1 − x�

− x3 − �1 − x��Bx2 + 2Ax�1 − x���

= x2�x − 1���B − 2A − 1 + 2p�x + 2�A − p�� . �4�

Setting ẋ=0, we can obtain that

x = 0 or x = 1 or x =
2�A − p�

2A + 1 − B − 2p
.

Since B�1 and A� p, we have 2�A− p��2A+1−B−2p.
This means that 2�A−p�

2A+1−B−2p �1 �when 2A+1−B−2p�0� or
2�A−p�

2A+1−B−2p �0 �when 2A+1−B−2p�0�. As a result, the so-
lution x= 2�A−p�

2A+1−B−2p should be discarded.
Consequently, Eq. �4� has two fixed points: at x=1 there is

an unstable equilibrium where everybody cooperates; at x
=0 there is a stable equilibrium where everybody defects.
Therefore x=0 is the global attractor of these dynamics.
Hence, three-player PD predicts the victory of defectors in
well-mixed populations as in two-player PD.

Now let us discuss a more general case R= p=S=0, that
is, we allow P�S. In this case, we have

fC = 0

and

fD = Bx2 + 2Ax�1 − x� + P�1 − x�2.

Thus

� = xfC + �1 − x�fD = �1 − x��Bx2 + 2Ax�1 − x� + P�1 − x�2�

and

ẋ = x�fC − �� = − x�1 − x��Bx2 + 2Ax�1 − x� + P�1 − x�2� .

Suppose there exists one internal fixed point, i.e., 0�x
=x1�1 enables ẋ=0, then we have

Bx1
2 + 2Ax1�1 − x1� + P�1 − x1�2 = 0,

which requires either

B = A = P = 0

or at least one of the three parameters B ,A , P is negative.
This contradicts with the assumption of PD, i.e., defectors
always receive higher payoffs than cooperators �B�R=0,
A� p=0, P�S=0�.

Therefore, in the line of PD, there is no internal fixed
point in the general case R= p=S=0, either. Thus in the re-
mainder we will restrict to the case P=S, as often done for
the two-player case.

IV. RESULTS

In this section, we study the spatial three-player PD on 2D
lattice under different values of p. First we consider the case
p=0.

A. p=0

We study the spatial three-player PD, in which the game
is played in a 200�200 array. We assume that in each gen-
eration, a player could play the game with his/her eight

FIG. 5. �Color online� Typical
growth patterns in region R1.
The patterns correspond to t
=60,120,180.
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neighbors. As the game involves three players in a round,
wechoose to have all the possible combinations of two
neighbors to play. So a player will play C8

2=28 times at one
generation. The score for him is the sum of the payoffs in
these 28 encounters. Then at the start of the next generation,
each lattice site is occupied by the player with the highest
score among the previous owner and the eight immediate
neighbors. If the highest score is achieved at several sites,
then the lattice site will be occupied by a random selected

site from those with the highest scores. Note the site does not
stay preferably with its strategy when the site itself is among
those with highest payoff. In the results shown below, peri-
odic boundary conditions are used. We have also tested fixed
boundary condition, in which the players on the boundary
have less neighbors and play less times, and no qualitative
change is found.

Figure 1 shows in the space �A ,B�, four regions are clas-
sified. A 3�3 cluster of C will grow in regions I and II. In

FIG. 6. �Color online� Typical
growth patterns in region R2.
The patterns correspond to t
=60,120,180,240,300.

FIG. 7. �Color online� Typical growth patterns in region R3. The
patterns correspond to t=90,180.

FIG. 8. �Color online� Typical growth patterns in region R4. The
patterns correspond to t=90,180.
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contrast, it will not grow in regions III and IV. Furthermore,
a 3�3 cluster of D will grow in regions II and IV and it will
not grow in regions I and III.

Figure 2 shows typical spatial patterns in regions I, II, IV.
The color coding is the same as in Ref. �6�: blue represents
a C site that was C in the preceding generation; red, a D site
following a D; yellow, D following a C; and green, C fol-
lowing a D. Figure 2�a� shows the typical irregular and rela-
tively static network of “D lines” against a background of
C in region I. Figure 2�b� shows the typical pattern of the

dynamic chaos in region II. Figures 2�c� and 2�d� show the
typical patterns in region IV, in which most sites are occu-
pied by D and existing C form a stable cluster. With the
increase of B and/or A, the number of stable C clusters de-
creases. When B and/or A are large, all players become de-
fectors.

In the spatial two-player PD, the payoffs of the matrix are
usually set to R=1, T=b�1, S= P=0. As a result, static
network of “D lines” against a background of C is observed
when b�8 /5, and dynamic chaos are observed when 8 /5
�b�5 /3. When b�5 /3, most sites are occupied by D and
existing C form stable cluster. Therefore, regions I, II, IV in
three player PD are similar to regions b�8 /5, 8 /5�b
�5 /3, and b�5 /3, respectively. Note here we do not con-
sider self-interaction in spatial two-player PD in order for
consistency with three-player PD �see Ref. �7��.

Next we focus on region III. Figure 3 shows typical pat-
terns in region III. One can see stable C clusters exist. With
the increase of B and/or A, the number of stable C clusters

TABLE I. The analytical expressions of boundaries �cf. Figs. 4,
19, and 20�.

boundary 1 3B+15A=10+15p

boundary 2 10B+15A=28

boundary 3 6B+16A=15+12p

boundary 4 B+12A=3+15p

boundary 5 B+12A=3+15p

boundary 6 6B+16A=21+7p

boundary 7 6B+16A=28

boundary 8 3B+15A=28

FIG. 9. �Color online� �a� Pattern of a 3�3 cluster of C. �b�,�c�
patterns after one generation. �b� shows the pattern in regions R1-
R3; �c� shows the pattern in region R4.

FIG. 10. �Color online� Typi-
cal growth patterns in region
r1. The patterns correspond to
t=50,100,150.
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decreases. Although quantitatively patterns in region III have
more C clusters than that in region IV, the patterns are quali-
tatively similar to each other in these two regions. This is
because in region III, �i� a single D can grow into a 3�3 D
cluster after one generation; �ii� 3�3 D clusters will not

grow if they are well separated from each other. But D clus-
ters that are not well separated could grow. As a result, ran-
domly distributed defectors have great chance to grow and
merge together to form large D clusters. For example, as-
sume there are four defectors surrounded by cooperators, and
their locations are �i , j�, �i , j+5�, �i+5, j�, �i+5, j+5�. It is
easy to find out these four defectors could grow into a large
D cluster consisting of 64 defectors.

We study growth pattern of a 3�3 cluster of C in regions
I and II. It is found there are four kinds of growth patterns,
corresponding to the four regions shown in Fig. 4�a�. The
typical growth patterns are shown in Figs. 5–8.

We investigate the boundaries between the regions. Figure
9�a� shows the pattern of a 3�3 cluster of C. Figures 9�b�
and 9�c� shows patterns after one generation. Figure 9�b�
shows the pattern in regions R1-R3 and Fig. 9�c� shows the
pattern in region R4. Difference between the patterns is
shown by sites with red colored circled C or D. These sites
are originally in the D state, and they have seven D neigh-
bors and one C neighbor �see sites with blue colored circled
D�. The C neighbor has three C neighbors, and its payoff
PC=3. For the seven D neighbors, it is obvious the maxi-
mum payoff is achieved on sites with green colored D. These

FIG. 11. �Color online� Typi-
cal growth patterns in region
r2. The patterns correspond to
t=50,100,150.

FIG. 12. �Color online� Typical growth patterns in region r3.
The patterns correspond to t=45,90,135,160,180.

FIG. 13. �Color online� Typical growth patterns in region r4.
The patterns correspond to t=90,180.
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sites have two C neighbors and six D neighbors, and their-
payoffs PD=B+12A. It is clear the boundary between re-
gions R1-R3 and region R4 �boundary 4� is determined
by PC= PD, i.e., B+12A=3. Using this method, it is straight-

forward to obtain that the boundary separating regions I, II
from regions III, IV �boundary 1� is 3B+15A=10 �see Table
I with p=0�.

Our simulations show the pattern in region R3 becomes
different from that in regions R1 and R2 after four genera-
tions; the pattern in region R1 becomes different from that in
region R2 after twelve generations. Therefore, using
themethod presented above, we can obtain that the boundary
between region R2 and R3 �boundary 3� is 6B+16A=15; the
boundary between region R1 and R2 �boundary 2� is 10B
+15A=28 �see Table I with p=0�.

Now we study growth pattern of a 3�3 cluster of D in
regions II and IV. It is found there are six kinds of growth
patterns, corresponding to the six regions shown in Fig. 4�b�.
The typical growth patterns are shown in Figs. 10–15.

The boundaries between the regions could be calculated
as before. One just needs to find out at which generation the
patterns in the studied regions become different from each
other. The boundaries are listed as follows: the boundary
separating regions II, IV from regions I, III �boundary 2� is
10B+15A=28; the boundary between region r1 and region

FIG. 14. �Color online� Typical growth patterns in region r5.
The patterns correspond to t=40,60,80,100,110,120,130,140,
160,180.

FIG. 15. �Color online� Typical growth patterns in region r6.
The patterns correspond to t=90,180.

FIG. 16. �Color online� The growth pattern of a 3�3 D cluster
after two generations. Parameters B=2.8, A=0.7.
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FIG. 17. �Color online� Typical growth patterns in region r7.
The pattern corresponds to t=50.
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r2 �boundary 5� is B+12A=3; the boundary between region
r2 and region r3 �boundary 1� is 3B+15A=10; the boundary
between region r3 and region r4 �boundary 6� is 6B+16A
=21; the boundary between region r4 and region r5 �bound-
ary 7� is 6B+16A=28; the boundary between region r5 and
region r6 �boundary 8� is 3B+15A=28 �see Table I with
p=0�.

Since different growth behaviors of D cluster and C clus-
ter are identified in regions r1 and r2, different cooperation
behavior might occur in these two regions. We have studied
cooperation frequency f in regions r1 and r2. It is found f
�0.3 in region r2, which is very close to the cooperation
frequency f �0.299 in region 8 /5�b�5 /3 in two-player
PD. However, in region r1, simulations show cooperation
frequency is notably larger: f �0.316. This means the ap-
proximation calculation used in Ref. �7� �see Fig. 7 in Ref.
�7�� becomes invalid.

Finally, we point out that on the boundaries, the symmetry
will be broken. For example, let us consider parameters B
=2.8, A=0.7, which is on the boundary 6B+16A=28. Figure
16 shows the growth pattern of a 3�3 D cluster after two
generations. For the sites with blue colored circled C, the
maximum payoff is 28 and it can be achieved on sites with
green colored C and sites with red colored circled D. As a
result, the sites with blue colored circled C can be randomly

occupied by C or D, which breaks the symmetry. Note that
the symmetry is also broken on boundaries in two-player PD.

B. p=1 Õ2

In this subsection, we consider the case p=1 /2. Figure
1�b� shows that the four regions remain qualitatively un-
changed. In the special case B=2A, the three-player PD re-
duces to that corresponding to Eq. �2� �see the red line in Fig.
1�b��. One can see that only three regions are observed along
the red line, which is the same as in spatial two-player PD
�without self-interaction�.

Regions I and II still consist of four regions R1-R4 �see
Fig. 4�c��. The growth patterns in regions R1-R4 are the
same as shown in Figs. 5–8. On the other hand, regions II
and IV is still classified by five boundaries as in the case of
p=0. However, due to variation of the boundaries, different
number of regions are classified under different values of p.
For example, Fig. 4�d� shows that eight regions exist when
p=1 /2. The growth patterns in regions r1-r6 are the same as
shown in Figs. 10–15. However, growth patterns in regions
r7, r8 are different, which are shown in Figs. 17 and 18.

In Fig. 4�c�, one can see that only three growth patterns
could be observed along the red line. In Fig. 4�d�, one can
see that only five growth patterns could be observed along
the red line. This is the same as in spatial two-player PD
�without self-interaction�.

We study the cooperation frequency in regions r1, r2, r7,
r8. It is found f �0.331 in region r1, f �0.293 in region r2,
f �0.376 in region r7, f �0.365 in region r8. This further
demonstrates that the approximation calculation used in Ref.
�7� becomes invalid in spatial three-player PD.

C. General values of p

Table I gives the expressions of boundaries 1–8 at general
values of p. Note that boundaries 2, 7, 8 are independent of
p and boundaries 4 and 5 are identical. One can plot the
regions of growth patterns of C cluster and D cluster from
the expressions. We would like to mention that �i� when p
� pc=0.6773 at which boundaries 1 and 2 intersect at B=A,
region III will disappear �Fig. 1�c��; �ii� with the increase of
p, the growth patterns of D cluster also change: new region
appears and some existing patterns gradually disappear �see,
e.g., Fig. 19�; �iii� with the increase of p, regions R3 and R2
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FIG. 18. �Color online� Typical growth patterns in region r8.
The pattern corresponds to t=50.

FIG. 19. �Color online� Re-
gions of growth pattern of a 3
�3 D cluster. �a� p=0.6, new re-
gion r9 appears compared with
Fig. 4�d�, nevertheless, the growth
pattern in region r9 is the same as
in region r1; �b� p=0.8, region r3
disappears compared with �a�.
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gradually disappear: region R3 disappears at p=0.7414 at
which boundaries 3 and 4 intersect at B=A; region R2 dis-
appears at p=0.7707 at which boundaries 2 and 4 intersect at
B=A �Fig. 20�.

V. CONCLUSION

To summarize, we have extended traditional two-player
PD to three-player PD. It is found four regions in the space
are classified when p� pc=0.6773. While regions I, II, IV
are similar to regions b�8 /5, 8 /5�b�5 /3, b�5 /3 in two-
player PD �without self-interaction�, region III, in which nei-
ther a 3�3 cooperator cluster nor a 3�3 defector cluster
could grow, has no counterpart in two-player PD. Neverthe-
less, when starting from a random distribution, it is found
region III exhibits qualitatively similar pattern as in region
IV. When p� pc, region III disappears.

In addition, we find out there are more growth patterns of
a 3�3 cooperator cluster and defector cluster than in two-
player PD. Moreover, the number of growth patterns depends
on p. In the special case of p=1 /2 and B=2A, the three-
player PD exhibits the same results as two-player PD. The
analytical expressions for boundaries between regions I–IV
and between different growth patterns are obtained.

Finally, multiple cooperation frequencies are identified in
region II. This means the approximation calculation used in
Ref. �7� becomes invalid.
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FIG. 20. �Color online� Re-
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